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Two points

• Initial geometry fluctuations can explain the ridge
and broad away side.

• Flow is the right language for these structures:

J. Takahashi et al. P. Sorensen Glauber MC

ε ⇒ v2         Elliptic flow  
ε3 ⇒ v3   Triangular flow

PRL 103, 242301 (2009) arXiv:0805.4411 arXiv:1002.4878

BA, G.Roland, arXiv:1003.0194 (PRC in press)
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Initial Geometry Fluctuations I

Participant eccentricity reconciles 
elliptic flow for Cu+Cu and Au+Au collisions. 

System size dependence 
of elliptic flow

PHOBOS PRL 98, 242302 (2007)
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Initial Geometry Fluctuations II

Eccentricity fluctuations Elliptic flow fluctuations

Observed elliptic flow fluctuations confirm 
large fluctuations in the initial collision geometry.

PHOBOS PRL 104, 142301 (2010) 
PHOBOS PRC81, 034915 (2010) 
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Triangular anisotropy in initial geometry
can be quantified by “participant triangularity”

analogous to participant eccentricity.
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Participant triangularity
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Participant triangularity
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Triangular flow
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Correlations at large Δη
STAR inclusive

1.2<Δη<1.9
PHOBOS inclusive

2<Δη<4
PHOBOS pT

trig>2GeV
2<Δη<4

Long range correlations are well described by 3 Fourier Components.

PRC 81, 024904 (2010) PRL 104, 06230 (2010)arXiv:0806.0513

BA, G.Roland, arXiv:1003.0194 (PRC i n press)
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AMPT Model

AMPT model also produces similar correlation
structures that extend out to long range in Δη.

AMPT Au+Au 0-20%

Lin et. al. PRC72, 064901 (2005)
Ma et. Al. PLB641 362 (2006)

AMPT model: Glauber initial conditions, collective flow

R R

Correlations Elliptic flow subtracted
correlations
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Elliptic flow in AMPT
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ψ3

Triangular flow in AMPT

Triangularity leads to triangular flow in AMPT.
BA, G.Roland,

arXiv:1003.0194
(PRC in press)
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Flow and correlations in AMPT
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Triangular flow in data

The ratio of triangular flow to elliptic flow
qualitatively agree between data and AMPT.

PHOBOS STAR

BA, G.Roland,
arXiv:1003.0194
(PRC in press)

PHOBOS PRC 81, 024904 (2010)
PHOBOS PRL 104, 06230 (2010)

STAR arXiv:0806.0513
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Summary
• Fluctuations in MC Glauber leads

to finite “participant triangularity.”
• In AMPT model, large triangular

flow signal observed correlated
with initial triangularity:

• Ridge and broad away side in AMPT have dominant
contribution from triangular flow.

• Fourier decomposition of long range azimuthal
correlations in AMPT and data show qualitative
agreement as a function of centrality and momentum.

BA, G.Roland,
arXiv:1003.0194
(PRC in press)
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Future

Luzum, Ollitrault Private communication

Triangular flow is a new handle on the initial geometry 
and the hydrodynamic expansion of the medium.
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Backups
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AMPT Model

AMPT model also produces similar correlation
structures that extend out to long range in Δη.

AMPT Au+Au 0-20%

Lin et. al. nucl-th/0411110

AMPT model: Glauber initial conditions, collective flow

R R

Correlations Elliptic flow subtracted
correlations
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Initial geometry fluctuations

PHOBOS nucl-ex/0610037 PHOBOS 0903.2811 

Au+Au
pT

trig>2.5GeV

PHOBOS 1002.0534 

A consistent picture

1003.0194
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Two different pictures
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Triangular flow
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Phases
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Second Fourier coefficient

• Why do we believe it is collective flow?
 Large!
 Present at large Δη: early times
 Connection to initial geometry

 i.e. centrality dependence
 pT dependence
 Also v2{4}, v2 fluctuations and v2

2(η1,η2)
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Third Fourier coefficient

• Why should we believe it is collective flow?
 Large!
 Present at large Δη: early times
 Connection to initial geometry

 i.e. centrality dependence
 pT dependence
 Also three particle correlations

?


